

CJ Serie

- Drehelastisch
- Schwingungsdämpfend
- Wartungsfrei
- Nabenwerkstoffe: Aluminium, Grauguss (GG/GGG), Sinterstahl, Stahl

GS Serie

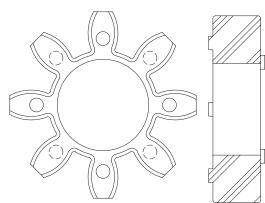
- Spielfreie Wellenkupplung
- Einsatz in der Mess-, Regel- und Steuerungstechnik
- Wartungsfrei
- Nabenwerkstoffe: Aluminium, Stahl

28

Elastische Klauenkupplungen von Lovejoy

Einleitung

Seit über 100 Jahren setzt Lovejoy Inc. die Standards für "gerade" Klauenkupplungen in den Vereinigten Staaten und weltweit. Lovejoy präsentiert jetzt die CJ- und die GS-Serie, eine vollständige Baureihe elastischer Klauenkupplungen für fast alle Anwendungen. Die Bogenklauenkupplung der CJ - Serie bietet einen zuverlässigen Betrieb für leichte, mittlere und schwere Elektro- und Verbrennungsmotoren-Anwendungen. Die GS-Serie liefert eine Kupplungslösung für Bewegungssteuerungen in der Industrie. Dieses Produktangebot setzt Lovejoys lange Historie als weltweit bedeutendster Kupplungslieferant fort.


Das Design der Bogenklauen

Die dreiteilige Konstruktion verbindet die radiale der Klauenfläche mit der radialen und axialen Krümmung (Balligkeit) des Elastomers (Kupplungsstern). Die Bogenklauennaben werden in Sintereisen, Stahl, Aluminium, Gusseisen und Sphäroguss angeboten. Die Bogenklauenkupplungen der CJ Series und die Auswahl der Urethan-Elemente gestatten Winkel-, Parallel- und Axialverlagerungen. Die dreiteilige Konstruktion vereinfacht die Montage und anders als bestehende Metall auf Metall Kupplungskonstruktionen erfordert die CJ - Serie keine Schmierung. Nach dem Zusammenbau haben die Bauteile der CJ Serie keinen metallischen Kontakt. Die Konstruktion mit vorgespanntem Elastomer bietet den Vorteil, dass selbst nach dem Ausfall des Elastomer-Elements die Funktion erhalten bleibt (ausfallsicheres System). Der Drehmomentbereich reicht von 7,5 bis 28.000 Nm.

Elastomere (Kupplungsstern-Materialien)

Lovejoy hat unterschiedliche Kupplungsstern-Typen für die Produktreihe der CJ-Bogenklauenkupplungen zur Auswahl. Urethan-Sterne liefern zusammen mit guten Dämpfungseigenschaften eine hohe Abriebbeständigkeit und Elastizität. Die Sterne werden in einer Auswahl von Shore-Härtegraden mit unterschiedlichen Drehmomentleistungen, Dämpfungseigenschaften und chemischen Beständigkeiten angeboten. Der 92-Shore-Stern (Weiß oder Gelb) ist Standard und bietet eine exzellente Drehmoment-Übertragungsleistung. Der 80-Shore-Stern (Blau) hat die besten Dämpfungseigenschaften. Der 95/98-Stern (Rot) bietet die höchste Drehmoment-Übertragungsleistung. Der 64° Shore Stern wird für hohe Drehmomente und Luftfeuchtigkeiten (tropenbeständikeit) angeboten. Die Standard-Sterne sind in der Mitte offen, um enge Abstände der Wellenenden zu ermöglichen. Alle Standard-Sterne sind bis zu einer

Temperatur von bis zu +100° C ausgelegt. (Siehe Seite 15 für die Temperatureinstufungen der GS-Sterne.) Das Urethan-Material widersteht sowohl Öl, Schmutz, Fett, Feuchtigkeit, vielen Lösungsmitteln als auch den atmosphärischen Einwirkungen durch Ozon.

Elastomer-Empfehlungstabelle

•	
Kupplungsstern-Typ	Anwendungsanforderungen:
80 Shore A (Blau)	Gute Dämpfungseigenschaften
92 Shore A (Gelb)	Allgemeine und Hydraulikanwendungen
95/98 Shore A (Rot)	Hohe Drehmomentanforderungen
64 Shore D (Grün)	Hohes Drehmoment und extreme Luftfeuchtigkeit

Standarddesign des Kupplungssterns

Elastomer - Leistungsdaten

Kupplungsstern-			Tempera	aturbereich	Lager-	,	Verlagerung	:	
Тур	Farbe	Material	Normal	Maximum	Größen	Winkel	Parallel	Axial	Typische Anwendungen
80 Shore A	Blau	Polyurethan	-40 bis 100 °C	-40 bis 120 °C	14 - 38	0,9 - 1,3 Grad	0,2 - 0,6 mm	0,6 - 4,6 mm	Gute Dämpfungseigenschaften
92 Shore A	Gelb	Polyurethan	-40 bis 100 °C	-50 bis 120 °C	14 -180	0,9 - 1,3 Grad	0,2 - 0,6 mm	0,6 - 4,6 mm	Allgemeine und Hydraulikanwendungen
95/98 Shore A	Rot	Polyurethan	-40 bis 100 °C	-40 bis 120 °C	14 -180	0,9 - 1,3 Grad	0,2 - 0,6 mm	0,6 - 4,6 mm	Hohe Drehmomentanforderungen
64 Shore D	Grün	Polyurethan	-30 bis 110 °C	-30 bis 130 °C	14 -180	0,9 - 1,3 Grad	0,2 - 0,6 mm	0,6 - 4,6 mm	Hohes Drehmoment/extreme Luftfeuchtigkeit

Der Auswahlprozess für die CJ Series*

Schritt 1: Bestimmung des Nenndrehmoments Ihrer Anwendung:

Tkn [Nm] = P [kW] x 9550 U/min [1/min]

Schritt 2: Berechnung des Betriebsfaktors Ihrer Anwendung mit der

Tabelle unten. Der Gesamtbetriebsfaktor (K) ergibt sich aus:

 $K = K1 \times K2 \times K3$

Schritt 3: Berechnung des konstruktiven Drehmoments (D_{Tkmax})

Ihrer Anwendung.

Konstruktives Drehmoment (DT_{kmax}) = Nenndrehmoment x Betriebsfaktor.

Schritt 4: Unter Verwendung der Elastomer- Leistungsdatentabellen

auf den Seiten 3 und 4 den Urethan-Shore-Härtegrad

auswählen, der am besten den relativen

Dämpfungsanforderungen Ihrer Anwendung entspricht.

Schritt 5: Finden Sie als nächstes die Spalten, in denen die Werte

T_{kn} und T_{kmax} in Nm gelistet sind und vergleichen Sie diese mit dem Wert DT_{kmax} für Ihre Anwendung. Stellen Sie sicher, dass die Werte des Mitnehmers (Sterns) größer als

die Anwendungswerte sind.

Schritt 6: Nachdem die Größe unter Verwendung der

Drehmomentwerte ausgewählt ist, stellen Sie mit Hilfe der

Tabelle auf Seite 6 sicher, dass der erforderliche Bohrungsdurchmesser in die Kupplung passt.

Schritt 7: Überprüfen Sie sorgfältig das Gesamtmaß der Kupplung, um

zu gewährleisten, dass die Kupplung in den Einbauraum

passt.

* Dieser Auswahlprozess basiert nur auf Anwendungsfaktoren. Es steht auch ein Auswahlprozess nach der Norm DIN 740 Teil 2 zur Verfügung. Wenden Sie sich zwecks Details an Raja-Lovejoy Engineering.

Anwendungs-Betriebsfaktor (K1)

	Betriebsfaktor (K1)
Gleichmäßiger Betrieb mit kleinen Beschleunigungsmassen. Hydraulik- und Zentrifugalpumpen, kleine Generatoren, Gebläse, Lüfter, Ventilatoren, Band/Schraubenförderer.	1,0
Gleichmäßiger Betrieb mit mittleren Beschleunigungsmassen. Blechbiegemaschinen, Holzbearbeitungsmaschinen, Walzwerke, Textilmaschinen, Mischer.	1,2
Ungleichmäßiger Betrieb mit mittleren Beschleunigungsmassen. Rotierende Öfen, Druckpressen, Generatoren, Schredder, Wickelmaschinen, Spinnmaschinen, Pumpen für dickflüssige Fluide.	1,3
Ungleichmäßiger Betrieb und Stoßbelastungen mit mittleren Beschleunigungsmassen. Betonmischer, Fallhämmer, Seilbahnen, Papiermühlen, Kompressionspumpen, Propellerpumpen, Seilwinden, Zentrifugen.	1,4
Ungleichmäßiger Betrieb und starke Stoßbelastungen mit großen Beschleunigungsmassen. Bagger, Hammermühlen, Kolbenpumpen, Pressen, Erdbohrmaschinen, Scheren, Schmiedepressen, Steinbrecher	1,6
Ungleichmäßiger Betrieb und sehr starke Stoßbelastungen mit sehr großen Beschleunigungsmassen. Kolbenkompressoren und Pumpen ohne Drehzahlregelung, schwere Walzensätze, Schweißmaschinen, Ziegelpressen, Steinbrecher.	1,8

Anwendungs-Betriebsfaktor für Anläufe pro Stunde (K2)

Anläufe per Stunde	100	200	400	800	
Betriebsfaktor (K2)	1,0	1,2	1,4	1,6	

Anwendungs-Betriebsfaktor für Umgebungstemperaturen (K3)

Umgebungstemperatur	-30 bis +30 °C	+40 °C	+60 °C	+80 °C
Betriebsfaktor (K3)	1,0	1,2	1,4	1,8

Definition der Begriffe

 $\begin{array}{ll} {\rm T_{kn}} & {\rm Nenndrehmoment~der~Kupplung} \\ {\rm T_{kmax}} & {\rm Maximales~Drehmoment~der~Kupplung} \end{array}$

P [kW] Leistung in Kilowatt U/min [1/min] Umdrehungen pro Minute

Nm Newtonmeter

 $\mathsf{DT}_{\mathsf{kmax}} \qquad \qquad \mathsf{Maximales} \; \mathsf{Drehmoment} \; \mathsf{der} \, \mathsf{Anwendung}$

T_{kw} Variierende Belastung einer Anwendung in Kilowatt

(DIN 740 Teil 2)

P_{kw} Zulässiger Leistungsverlust

Elastomer-Drehmomentauslegung

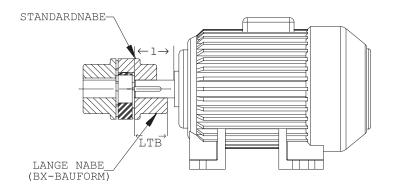
	Maximale	Drehzahl	., .		Drei	nmoment (Nm)									
	[1/mi	n1 bei	verare	hwinkel		Maximum	Variierende			Dynamische Torsi	onssteife [Nm/rad	1				
Größe	Umfangsges 30 m/s*	chwindigk. =	T _{kn}	lr.	T _{kn}	T _{kmax}	Belastung T.	P _{kw}	100 % T _{kn}	75 % T _{kn}	50 % T _{kn}	25 % T _{kn}				
	00 111/3	40 111/3	'kn	T _{kmax}			l kw		Shore A (Weiß o		oo 70 1kn	20 70 1 kn				
14	19000	_	6,4°	10°	7,5	15	2,0	-	0.38×10^3	0,31 x 10 ³	0,24 x 10 ³	0,14 x 10 ³				
19	14000	19000	0, 1	10	10	20	2,6	4,8	1,28 x 10 ³	1,05 x 10 ³	0.80×10^3	0,47 x 10 ³				
24	10600	14000			35	70	9,1	6,6	4,86 x 10 ³	3,98 x 10 ³	3,01 x 10 ³	1,79 x 10 ³				
28	8500	11800			95	190	25	8,4	10,90 x 10 ³	8,94 x 10 ³	6,76 x 10 ³	4,01 x 10 ³				
38	7100	9500			190	380	49	10,2	21,05 x 10 ³	17,26 x 10 ³	13,05 x 10 ³	7,74 x 10 ³				
42	6000	8000			265	530	69	12,0	23,74 x 10 ³	19,47 x 10 ³	14,72 x 10 ³	8,73 x 10 ³				
48	5600	7100			310	620	81	13,8	36,70 x 10 ³	30,09 x 10 ³	22,75 x 10 ³	13,49 x 10 ³				
55	4750	6300			410	820	107	15,6	50,72 x 10 ³	41,59 x 10 ³	$31,45 \times 10^3$	18,64 x 10 ³				
65	4250	5600	3,2°	5°	625	1250	163	18,0		$7,13 \times 10^3$ $79,65 \times 10^3$		35,70 x 10 ³				
75	3550	4750	5,2	3	1280	2560	333	21,6		$79,03 \times 10^{3}$ $79,03 \times 10^{3}$ $92,92 \times 10^{3}$		41,65 x 10 ³				
90	2800	3750			2400	4800	624	30,0	190,09 x 10 ³	155,87 x 10 ³	70,26 x 10 ³ 117,86 x 10 ³	69,86 x 10 ³				
100	2500	3350			3300	6600	858	36,0	253,08 x 10 ³	207,53 x 10 ³	156,91 x 10 ³	93,01 x 10 ³				
110	2240	3000			4800	9600	1248	42,0	311,61 x 10 ³	255.52 x 10 ³	193,20 x 10 ³	114,52 x 10 ³				
125	2000	2650			6650	13300	1729	48,0	474,86 x 10 ³	389,39 x 10 ³	294,41 x 10 ³	174,51 x 10 ³				
140	1800	2360			8550	17100	2223	54,6	660,49 x 10 ³	541,60 x 10 ³	409,50 x 10 ³	242,73 x 10 ³				
160	1500	2000			12800	25600	3328	75,0	890,36 x 10 ³	730,10 x 10 ³	552,03 x 10 ³	327,21 x 10 ³				
180	1400	1800			18650	37300	4849	78,0	2568,56 x 10 ³	2106,22 x 10 ³	1592,51 x 10 ³	943,95 x 10 ³				
100	1400	1000	Ure	than-K						nore (Rot) Größen	,	945,95 X 10°				
14	19000	_	6,4°	10°	12,5	25	3,3	-	0,56 x 10 ³	0,46 x 10 ³	0,35 x 10 ³	0,21 x 10 ³				
19	14000	19000	0,4	10	17	34	4,4	4,8	$2,92 \times 10^3$ $2,39 \times 10^3$ $1,81 \times 10^3$			1,07 x 10 ³				
24	10600	14000			60	120	16	6,6	9,93 x 10 ³	8,14 x 10 ³	6,16 x 10 ³	3,65 x 10 ³				
28	8500	11800			160	320	42	8,4	26,77 x 10 ³	21,95 x 10 ³	16,60 x 10 ³	9,84 x 10 ³				
38	7100	9500			325	650	85	10,2	48,57 x 10 ³	39,83 x 10 ³	30,11 x 10 ³	17,85 x 10 ³				
42	6000	8000			450	900	117	12,0	54,50 x 10 ³	44,69 x 10 ³	33,79 x 10 ³	20,03 x 10 ³				
48	5600	7100			525	1050	137	13,8	65,29 x 10 ³	53,54 x 10 ³	40,48x 10 ³	24,00 x 10 ³				
55	4750	6300			685	1370	178	15,6	94,97 x 10 ³	77,88 x 10 ³	58,88 x 10 ³	34,90 x 10 ³				
65	4250	5600	3,2°	5°	940	1880	244	18,0	129,51 x 10 ³	106,20 x 10 ³	80,30 x 10 ³	47,60 x 10 ³				
75	3550	4750	0,2		1920	3840	499	21,6	197,50 x 10 ³	161,95 x 10 ³	122,45 x 10 ³	72,58 x 10 ³				
90	2800	3750			3600	7200	936	30,0	312,20 x 10 ³	256,00 x 10 ³	193,56 x 10 ³	114,73 x 10 ³				
100	2500	3350			4950	9900	1287	36,0	383,26 x 10 ³	314,27 x 10 ³	237,62 x 10 ³	140,85 x 10 ³				
110	2240	3000			7200	14400	1872	42,0	690,06 x 10 ³	565,85 x 10 ³	427,84 x 10 ³	253,60 x 10 ³				
125	2000	2650			10000	20000	2600	48,0	1343,64 x 10 ³	1101,79 x 10 ³	833,06 x 10 ³	493,79 x 10 ³				
140	1800	2360			12800	25600	3328	54,6	1424,58 x 10 ³	1168,16 x 10 ³	883,24 x 10 ³	523,54 x 10 ³				
160	1500	2000			19200	38400	4992	75,0	2482,23 x 10 ³	2035,43 x 10 ³	1538,98 x 10 ³	912,22 x 10 ³				
180	1400	1800			28000	56000	7280	78,0			2208,10 x 10 ³	1308,84 x 10 ³				
									0 Shore A Größen 14-125 (Blau)			,				
14	19000	-	6,4°	10°	4	8	1	-			-	-				
19	14000	19000	-,-		4,9	9,7	1,3	-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,17 x 10 ³	0,11 x 10 ³				
24	10600	14000			17	34	4,4	-			1,52 x 10 ³	1,03 x 10 ³				
28	8500	11800			46	92	12	-	2,30 x 10 ³	1,93 x 10 ³	1,52 x 10 ³	1,03 x 10 ³				
38	7100	9500			93	185	24	-	4,10 x 10 ³	3,45 x 10 ³	2,75 x 10 ³ 1,85 x 10 ³					

^{*}Lovejoy empfiehlt 30 m/s als max. Geschwindigkeit zu verwenden. Für Betriebsdrehzahlen über dem Maximum nur Stahl- oder Sphärogussnaben verwenden und eine dynamische Auswuchtung ist erforderlich.

Elastomer Drehmomentauslegung (Fortsetzung)

Spezial-Elastomer: 64 Shore D Auslegungstabelle*

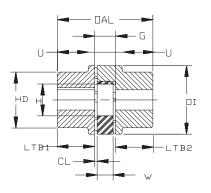
	Maximale	Drehzahl			Ι	Drehmor	ment (Nn	1)				
	[1/mi	n] bei	Verdre	hwinkel	Nominal	Maximum	Variierende	ĺ		ynamische Torsi	onssteife [Nm/rad]
l		schwindigk. =	_	l_	_		Belastung	_				
Größe	30 m/s**	40 m/s	T _{kn}	T _{kmax}	T _{kn}	T _{kmax}	T _{kw}	P _{kw}	100% T _{kn}	75% T _{kn}	50% T _{kn}	25% T _{kn}
						Urethan-	Kupplun	gsstern -	64 Shore D (Grün)		
14	19000	-	4,5°	7,0°	16	32	4,2	9,0	0,76 x 10 ³	0,62 x 10 ³	0,47 x 10 ³	0,28 x 10 ³
19	14000	19000			21	42	5,5	7,2	5,35 x 10 ³	4,39 x 10 ³	3,32 x 10 ³	1,97 x 10 ³
24	10600	14000			75	150	19,5	9,9	15,11 x 10 ³	12,39 x 10 ³	9,37 x 10 ³	5,55 x 10 ³
28	8500	11800			200	400	52	12,6	27,52 x 10 ³	22,57 x 10 ³	17,06 x 10 ³	10,12 x 10 ³
38	7100	9500			405	810	105	15,3	5,3 $70,15 \times 10^3$ $57,52 \times 10^3$		43,49 x 10 ³	25,78 x 10 ³
42	6000	8000			560	1120	146	18,0	79,86 x 10 ³	65,49 x 10 ³	49,52 x 10 ³	29,35 x 10 ³
48	5600	7100			655	1310	170	20,7	95,51 x 10 ³	78,32 x 10 ³	59,22 x 10 ³	35,10 x 10 ³
55	4750	6300			825	1650	215	23,4	107,92 x 10 ³	88,50 x 10 ³ 66,91 x 10 ³		39,66 x 10 ³
65	4250	5600	2,5°	3,6°	1175	2350	306	27,0	151,09 x 10 ³	123,90 x 10 ³	93,68 x 10 ³	55,53 x 10 ³
75	3550	4750			2400	4800	624	32,4	248,22 x 10 ³	203,54 x 10 ³	153,90 x 10 ³	91,22 x 10 ³
90	2800	3750			4500	9000	1170	45,0	674,52 x 10 ³	553,11 x 10 ³	418,20 x 10 ³	247,89 x 10 ³
100	2500	3350			6185	12370	1608	54,0	861,17 x 10 ³	706,16 x 10 ³	533,93 x 10 ³	316,48 x 10 ³
110	2240	3000			9000	18000	2340	63,0	1138,59 x 10 ³	933,64 x 10 ³	705,92 x 10 ³	418,43 x 10 ³
125	2000	2650			12500	25000	3250	72,0	1435,38 x 10 ³	1177,01 x 10 ³	889,93 x 10 ³	527,50 x 10 ³
140	1800	2360			16000	32000	4160	81,9	1780,73 x 10 ³			654,42 x 10 ³
160	1500	2000			24000	48000	6240	112,5	3075,80 x 10 ³	2522,16 x 10 ³	1907,00 x 10 ³	1130,36 x 10 ³
180	1400	1800			35000	70000	9100	117,0	6011,30 x 10 ³	4929,27 x 10 ³	3727,01 x 10 ³	2209,15 x 10 ³


Max. metrische Bohrungstabelle [mm]

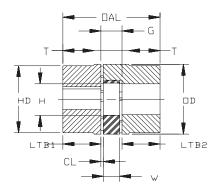
Größe	Material	A-Nabe	B-Nabe	A-Nabe	B-Nabe	BX-Nabe	BefestigSchraube
		Vorbohrung	Vorbohrung	Max. Bohr.	Max. Bohr.	Max. Bohr.	Größe
14	Aluminium	-	Massiv	-	16	Massiv	M4
	Sintermetall	-	Massiv	14	16	-	M4
	Aluminium	Massiv	Massiv	19	24	25	M5
19/24	Stahl	Massiv	Massiv	19	24	25	M5
	Sintermetall	-	19	19	24	-	M5
	Aluminium	Massiv	Massiv	24	32	35	M5
24/32	Stahl	Massiv	Massiv	24	32	35	M5
	Sintermetall	-	22	-	32	-	M5
	Aluminium	Massiv	9,5	28	38	40	M8
28/38	Stahl	Massiv	Massiv	28	38	40	M8
	Sintermetall	-	26	-	38	-	M8
	Aluminium	Massiv	12	38	45	45	M8
38/45	Stahl	Massiv	Massiv	38	45	45	M8
	Sintermetall	-	36	-	45	-	M8
	Aluminium	Massiv	25	42	55	55	M8
42/55	Stahl	Massiv	Massiv	42	55	55	M8
	Sintermetall	Massiv	34	42	55	-	M8
	Aluminium	Massiv	40	48	60	-	M8
48/60	Sintermetall	Massiv	40	48	60	-	M8
	Stahl	Massiv	Massiv	48	60	60	M8
55/70	Gusseisen	Massiv	47	55	70	-	M10
	Stahl	Massiv	Massiv	55	70	70	M10
65/75	Gusseisen	Massiv	57	65	75	-	M10
	Stahl	Massiv	Massiv	65	75	75	M10
75/90	Gusseisen	Massiv	50	75	90	-	M10
	Stahl	Massiv	Massiv	75	90	90	M10
90/100	Gusseisen	Massiv	79	90	100	-	M12
	Stahl	Massiv	Massiv	90	100	100	M12
100	Sphäroguss/Gusseisen	-	40	-	110	-	M12
110	Sphäroguss/Gusseisen	-	60	-	125	-	M16
125	Sphäroguss/Gusseisen	-	60	-	145	-	M16
140	Sphäroguss/Stahl	-	51	-	160	-	M20
160	Sphäroguss/Stahl	-	51	-	185	-	M20
180	Sphäroguss/Stahl	-	51	-	200	-	M20

Wenn der Kupplungsstern mit 64 Shore D eingesetzt wird, müssen Stahl- und Sphärogussnaben verwendet werden.
Lovejoy empfiehlt 30 m/s als max. Geschwindigkeit zu verwenden. Für Betriebsdrehzahlen über dem Maximum nur Stahl- oder Sphärogussnaben verwenden und ein dynamisches Auswuchten ist erforderlich.

Lovejoy CJ Series-Kupplungen (92-Shore-Element) für IEC-Standardmotoren


Drehst	r - 50 Hz	n = 300	eistung 0 [1/min]	Kuppl.	n = 1500	eistung) [1/min]	Kuppl.		eistung) [1/min]	Kuppl.	Motorle n = 750	istung [1/min]	Kuppl.	
Motor		llenende ser x Länge	2-р	olig	Größe	4-p	olig	Größe	6-р	olig	Größe	8-pc	olig	Größe
Größe	2-polig 4-	-, 6- und 8-polig	P [kW]	T [Nm]		P [kW]	T [Nm]		P [kW]	T [Nm]		P [kW]	T [Nm]	
56	9 >	¢ 20	0,09	0,32										
	, ,		0,12	0,41										
63	11:	x 23	0, <u>18</u>	0,62		0,12	0,88		0,06	0,7				
			0,25	0,86	14	0,18	1,3	14	0,09	1,1	14			
71	14	x 30	0,37	1,3	ļ	0,25	1,8		0,018	2		0,09	1,4	14
			0,55	1,9		0,37	2,5		0,25	2,8		0,12	1,8	
80	19	x 40	0,75	2,5		0,55	3,7		0,37	3,9		0,18	2,5	
			1,1	3,7	19/24	0,75	5,1	19/24	0,55	5,8	19/24	0,25	3,5	19/24
908	24	x 50	1,5	5		1,1	7,5		0,75	8		0,37	5,3	
90L			2,2	7,4		1,5	10		1,1	12		0,55	7,9	
100L		00	3	9,8	04/22	2,2	15	24/00	1,5	15	24/28	0,75	11	24/28
112M	28	x 60	4	40	24/28	3	20	24/28			24/20	1,1	16	24/20
TIZIVI			4	13		4	27		2,2	22		1,5	21	
132S			5,5	18		5,5	36		3	30		2,2	30	
	38	x 80	7,5	25	28/38	7.5	49	28/38	4	40	28/38			28/38
132M						7,5	49		5.5	40 55		3	40	
40000			11	36		11	72		5,5	55		4	54	
160M	12.	k 110	15	49	38/45	''	'2	38/45	7,5	75	38/45	5,5	74	38/45
160L	42 /	X 110	18,5	60	30/43	15	98	30/43	11	109	30/43	5,5 7,5	100	30/43
180M			22	71		18,5	121		11	109		7,5	100	
180L	48 >	k 110		/ 1	ł	22	144	40/	15	148		11	145	42/55
			30	97	42/55	30	196	42/55	18,5	181	42/55	15	198	12/00
200L	55 >	k 110	37	120	1	- 30	150		22	21		10	150	
225S			01	120		37	240			1		18,5	244	
225M	55 x 110	60 x 140	45	145	1	45	292	48/60	30	293	48/60	22	290	48/60
250M	60 x 140	65 x 140	55	177	48/60	55	356	55/70	37	361	55/70	30		55/70
280S			75	241		75	484		45	438	65/70**	37	483	
280M	1	75 x 140	90	289	55/70	90	581	65/70	55	535	65/70""	45	587	65/70**
315S			110	353		110	707	75**	75	727	75**	55	712	75**
315M	1	80 x 170	132	423	65/75	132	849	'`	90	873	13	75	971	
	65 x 140	00 1 1 1 0	160	513	05//5	160	1030		110	1070		90	1170	00/400
315L			200	641		200	1290		132	1280	90/100	110	1420	90/100
					75/90			90/100	160	1550	30,100	132	1710	
245	1	85 x 170	250	802	1	250	1600	1	200	1930		160	2070	100
315			315	1010		315	2020		250	2410	100	200	2580	
			355	1140		355	2280	100						
355	75 x 140	95 x 170	400	1280	00/400	400	2570	100	315	3040	110	250	3220	110
			500	1600	90/100	500	3210	110	400	3850	125	315	4060	125
			560	1790		560	3580	125	450	4330		355	4570	
400	80 x 170	100 x 210	630	2020		630	4030	120	500	4810	440	400	5150	140
			710	2270		710	4540		560	5390	140	450	5790	
			800	2560	100	800	5120	140	630	6060		500	3420	
450	90 x 170	120 x 210	900	2880		900	5760		710	6830	160	560	7190	160
			1000	3200	110	1000	6400	160	800	7690	.00	630	8090	

^{**}Mit Naben aus Stahl.



Kupplungsabmessungen und Materialien

Ausführung 1 - Zwei "A"-Naben

Elast. Klauenkupplung CJ

Ausführung 2 - Zwei "B"-Naben

Nabenabmessungen (mm)

			Aluguss		Gı	ısseiseı	า	Sp	härogus	s	Sinte	rmet./St	ahl								
			Min/			Min/			Min/			Min/		LTB1							
0	Naben-	Vor-	Max		Vor-	Max		Vor-	Max		Vor-	Max		& 	_	١,,	١,,,		.		l
Größe 14	Bauform	_	bohr.	HD	bohr.	Bohr.	HD	bohr.	Bohr.	HD	bohr.	Bohr.	HD	LTB2	G 13	CL	W	OAL	T;U	OD	H
14	B-Bauf. BX-Bauf.	S	S-16 S-16	-							S S	S-16 S-16	-	11 18,5	13	1,5	10	35 50		30	10 10
	A-Bauf.	S	S-16 S-19	32							S	S-16	32	25	16	1,5	10 12	66	20	30 40	18
19/24		S										6-24			16	1			20		18
19/24	B-Bauf. BX-Bauf.	S	S-24 S-24	-							19 S	S-24	-	25 37	16	2 2	12 12	66 90		40 40	18
	A-Bauf.	S	S-24 S-24	- 40							S	S-24 S-24	- 40	30	18	2	14	78	24	56	27
24/22	l	S		'								l -	'		18	1	l .	78	24		27
24/32	B-Bauf.	S	S-32	-							22 S	8-32	-	30	18	2 2	14			56 56	27
	BX-Bauf.	S	S-32	-								S-32	- 40	50	-		14	118	28		
00/00	A-Bauf.		S-28	48							S	S-28	48	35	20	2,5	15	90	28	65	30
28/38	B-Bauf.	9,5	11-38	-							26	10-38	-	35	20	2,5	15	90		65	30
	BX-Bauf.	S	S-38	-							S	S-38	-	60	20	2,5	15	140	07	65	30
20/45	A-Bauf.	S	S-38	66							S	S-38	66	45	24	3	18	114	37	80	38
38/45	B-Bauf.	12	12-45	-							36	14-45	-	45	24 24	3	18	114		80	38
	BX-Bauf.	S	S-45	- 75		0.40	75				S S	S-45	- 75	70	26	3	18	164	40	80	38 46
40/55	A-Bauf.		S-42		S	S-42	75					S-42		50		3	20	126	40	95	
42/55	B-Bauf.	25	27-55	-	34	36-55	-				S	S-55	-	50	26	3	20	126		95	46
	BX-Bauf.	S	S-55	-		0.40	٥٦				S	S-55	-	75	26	3	20	176	45	95	46
40/00	A-Bauf.	S	S-48	-	S	S-48	85				S	S-48	85	56	28	3,5	21	140	45	105	51
48/60	B-Bauf.	40	42-60	-	40	42-60	-				S	S-60	-	56	28 28	3,5	21	140		105	51
	BX-Bauf.					S-55	98				S S	S-60	- 98	80	30	3,5	21	188	52	105	51 60
FF/70	A-Bauf.				S		90					S-55		65		4	22	160	52	120	
55/70	B-Bauf.				47	49-70	-				S S	S-70 S-70	-	65 90	30 30	4	22 22	160		120 120	60
	BX-Bauf. A-Bauf.				S	S-65	115				S	S-70 S-65	- 115	75	35	4,5	26	210 185	47	135	60 68
65/75	B-Bauf.				57	59-75	113				S	S-05	-	75 75	35	1	26	185	47		68
03/73	BX-Bauf.				37	139-73	-				S	S-75	_	100	35	4,5 4,5	26	235		135 135	68
	A-Bauf.				S	S-75	135				S	S-75	135	85	40	5	30	210	53	160	80
75/90	B-Bauf.				50	52-90	-				S	S-75	-	85	40	5	30	210	55	160	80
75/90	BX-Bauf.				30	32-90	-				S	S-90 S-90	_	110	40	5	30	260		160	80
	A-Bauf.				s	S-90	160				S	S-90	160	100	45	5,5	34	245	62	200	100
90/100	B-Bauf.				3 79	81-100	160				S	S-100	-	100	45	5,5	34	245	02	200	100
90/100	BX-Bauf.				19	01-100	-				S	S-100	_	125	45	5,5	34	295		200	100
100	B-Bauf.							40	42-110	200	3	3-100	-	110	50	6	38	270		225	113
110	B-Bauf.							60	62-125	230				120	55	6,5	42	295		255	127
125	B-Bauf.							60	62-145	265				140	60	7	46	340		290	147
								00	02-145	203	E1	51-160	255							320	
140	B-Bauf.										51 51		290	155	65	7,5	50	375			165
160	B-Bauf.										51 51	51-185		175	75	9	57	425		370	190
180	B-Bauf.										57	51-200	325	185	85	10,5	64	475		420	220

CL = Abstand zwischen Kupplungsstern und Nabenfläche.

W = Materialstärke des Kupplungssterns S = Massive Nabe ohne Bohrung.

S = Massive Nabe ohne Bohrung. BX-Nabe = Verlängerte Nabenlänge. H = Innendurchmesser des Kupplungssterns

Max. Bohrung bezieht sich auf die maximal mögliche gerade Bohrung mit Passfedernut in der Nabe. Außendurchm. (OD) ist gleich dem Nabendurchm. (HD) bei den B-Bauformgrößen in Aluminium: 19, 24 und 28.

Nabenausführungen

Passfedernut mit Befestigungsschraube (KW)

Die Standardmethode von Lovejoy zur Sicherung der Nabe auf der Welle. Die Klemm-Bauform wird für spielfreie Drehmomentübertragungen empfohlen.

Ohne Passfedernut, mit Befestigungsschrauben (W/SS)

Befestigungsschrauben zur Sicherung der Nabe auf der Welle.

Keilwellennabe mit Befestigungsschraube (W/SS)

Nabenbohrung entsprechend den SAEund metrischen Keilwellennormen und mit Befestigungsschraube auf der Welle gesichert.

Keilwellennabe mit Klemmfunktion (C)

Nabenbohrung entsprechend den SAEund metrischen Keilwellennormen und mit einer Klemmfunktion auf der Welle gesichert.

Keilwellennabe mit L-Loc (L-LOC)

Nabe für genormte SAE- und metrischen Keilwellen mit der effizienteren L-Loc-Einrichtung zur Sicherung der Nabe auf der Welle.

Klemmnabe mit Einfachschlitz ohne Passfedernut (SC)

Spielfreie Klemmbauform für Drehmomentübertragungen. Die Drehmoment-Übertragungsleistung hängt vom Bohrungsdurchmesser ab.

Klemmnabe mit Einfachschlitz mit Passfedernut (CWK)

Spielfreie Keilwellenmoment mit Passfedernut für Drehmomentübertragungen.

Nabe mit Friktionsklemmvorrichtung (LD)

Diese Nabe hat eine Klemmvorrichtung zur Arretierung auf der Welle.

Spezifikationen der metrischen Bohrung und der Keilwelle . Metrische Bohrungsmaße

	_								1?	1.	F- 1	4 I.			- 1	\	- 24 - 1	17 F			4		- DI	1.000) F F:	-44 4		· ()			4:		1	1	_		_
		Naben-	Fertig-		Ι.				ndris																												
Gr	öße	Тур	bohr.	Vor-	6	8	9	10	11	12	14	15	16	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	55	60	65	70	75	80	85	90
14	AL	В	0	0	0	0	_	0	0	0	0	0		_	ldash	<u> </u>		Ш		Щ					_			_					_		\square		\vdash
	РМ	В	0	0	0	0	0	0	0	0	0	0				_		Ш		Ш															\square		\vdash
	AL	Α	0	0				0	0	0	0	0	0		0			Ш		Ш															Ш		
19		В	0	0												0		0		Ш					$oxed{oxed}$			$oxed{oxed}$							Ш		
19	РМ	Α	0	0	Ш			0	0	0	0	0	0	0	0			Ш		Ш		Ш	\Box	\Box	$oxed{oxed}$	Ш		$oxed{oxed}$		$oxed{oxed}$				Ш	Ш	لــــــــــــــــــــــــــــــــــــــ	\vdash
	Ш	В	οх	0				0	0	0	0	0	0	0	οх	0	0	οх	0	Ш															Ш		
	AL	Α	0	0							0	0	0	0	0	0		0																			
24		В	0	0														Ш	0	0																	
	РМ	Α	0	0								0	0	0	0	0	0	0	0	Ш															Ш		_
		В	οх	0							0	0	0	0	0	0	0	οх	0	οх																	
	AL	Α	0	0							0		0	0	0	0	0	0	0	0															\Box		
28	AL	В	0	0																	0		0	0											Ш		
20	РМ	Α	0	0							0	0	0	0	0	0	0	0	0																\Box		
		В	οх	0							0	0	0	0	0	0	0	0	0	οх	0	0	0	οх												لــــا	
	AL	Α	0	0												0		0	0	0	0	0	0	0											\square		
38		В	0	0																					0	0											
	РМ	Α	0	0							$ldsymbol{ld}}}}}}$		0	0	0	0	0	0	0	0	0	0	0	0													
	Ш	В	οх	0						$oxed{oxed}$		0	0	0	0	0	0	0	0	0	0	0	0	х	0	οх									\square		
	AL	Α	0	0							$ldsymbol{ld}}}}}}$							Ш		Ш	0	0	0	0	0	0									Ш		
42		В	0	0																							0	0	0	0					Ш		
	GG	Α	0	0															0	0	0	0	0	0	0	0											
		В	οх	0																						Х	0	οх	0	ох					Ш		
	AL	Α	0	0																		0	0	0	0	0	0	0									
48		В	0	0																									0	0	0						
+0	GG	Α	0	0															0		0	0	0	0	0	0	0	0									
	33	В	οх	0																									0	0	ОХ						
5 E	GG	Α	0	0																	0	0	0	0	0	0	0	0	0	0							
33	96	В	οх	0																											0	0	0				
65	GG	Α	0	0																					0		0	0	0	0	0	0					
03	STL	Α	0	0																																	
75	GG	Α	0	0																					0		0	0	0	0	0	0	0	0	\Box	\neg	П
75	STL	Α	0	0																															\Box	\neg	$\overline{}$
90	GG	Α	0	0														П		П									0	0	0	0	0	0	0	0	0

Bohrungen in Zoll

AL = Aluminiumnabe GG = Gusseisennabe

PM = SintermetalInabe

STL = Stahlnabe

O = Nabenbauform A oder B (Standard-Nabenlänge) X = Nabenbauform BX (lange Nabe), alle Stahlnaben

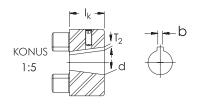
Abmessungen der Codes (+0,2)													
Abn	nessunge	n der (Codes										
Code	d	d Zoll	b ^{+0,05}	t ₂ +1,2									
Tb	9,5+0,03	3/8	3,17	11,1									
DNB	11,11 ^{M7}	7/16	2,4	12,5									
Т	12,69 ^{H7}	1/2	4,75	14,6									
Та	12,7+0,03	1/2	3,17	14,3									
DNC	13,45 ^{H7}	17/32	3,17	14,9									
Е	15,87 ^{+0,03}	5/8	3,17	17,5									
S	15,87 ^{+0,03}	5/8	3,97	17,9									
Es	15,88+0,03	5/8	4	17,7									
DND	15,852 ^{H7}	5/8	4,75	18,1									
Ed	15,87+0,03	5/8	4,75	18,1									
DNH	17,465 ^{H7}	11/16	4,75	19,6									
Ad	19,02+0,03	3/4	3,17	20,7									
As	19,02+0,03	3/4	4,78	21,3									
A	19,05+0,03	3/4	4.78	21.3									

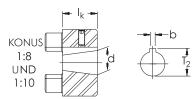
Abmessungen der Codes (+0,2)								
Code	d	d Zoll	b ^{+0,05}	t ₂ +1,2				
Fa	22,20+0,03	7/8	6,35	25,2				
Ga	22,21 ^{H7}	7/8	4,75	24,8				
DNI	22,228 ^{H7}	7/8	6,35	25,0				
Gs	22,22+0,03	7/8	4,78	24,4				
G	22,22+0,03	7/8	4,75	24,7				
F	22,22+0,03	7/8	6,38	25,2				
Gd	22,225 ^{M7}	7/8	4,76	24,7				
Gf	23,80+0,03	15/16	6,35	26,8				
В	25,37+0,03	1	4,78	27,8				
Ва	25,38 ^{H7}	1	6,35	27,6				
Bs	25,38+0,03	1	6,37	28,3				
Н	25,40+0,03	1	4,78	27,8				
DNF	25,38 ^{H7}	1	6,35	28,4				
Hs	25,40+0,03	1	6,35	28,7				

Abmessungen der Codes (+0,2)							
Code	d	d Zoll	b ^{+0,05}	t ₂ +1,2			
Sa	28,575 ^{M7}	1-1/8	6,35	31,7			
Sb	28,58+0,03	1-1/8	6,35	31,5			
Sd	28,58+0,03	1-1/8	7,93	32,1			
Ja	31,70 ^{H7}	1-1/4	7,93	34,4			
Jc	31,71+0,03	1-1/4	7,93	35,3			
Js	31,75+0,03	1-1/4	6,35	34,6			
J	31,75+0,03	1-1/4	7,93	34,4			
К	31,75 ^{H7}	1-1/4	7,93	35,5			
DNK	31,755 ^{H7}	1-1/4	7,93	35,3			
Ма	34,925 ^{M7}	1-3/8	7,93	38,7			
М	34,92+0,03	1-3/8	7,93	38,6			
RH1	34,93 ^{M7}	1-3/8	9,55	37,8			
Cb	36,50+0,03	1-7/16	9,55	40,9			
Ca	38,07 ^{+0,03}	1-1/2	7,93	42,0			

Abn	nessunge	n aer (oaes	(+U,Z)
Code	d	d Zoll	b ^{+0,05}	t ₂ +1,2
С	38,07+0,03	1-1/2	9,55	42,5
N	41,25 ^{+0,03}	1-5/8	9,55	45,6
Nb	41,275 ^{M7}	1-5/8	9,55	45,8
Ls	44,42+0,03	1-3/4	9,55	48,8
L	44,45 ^{K7}	1-3/4	11,11	49,4
Lu	47,625 ^{M7}	1-7/8	12,7	53,5
Da	49,20+0,03	1-15/16	12,7	55,0
Ds	50,77+0,03	2	12,7	56,4
D	50,80+0,03	2	12,7	55,1
Р	53,95+0,03	2-1/8	12,7	59,6
Pa	53,975 ^{M7}	2-1/8	12,7	60,0
Ub	60,325 ^{M7}	2-3/8	15,875	67,6
Wa	73,025 ^{M7}	2-7/8	19,05	81,7
Wd	85,725 ^{M7}	3-7/8	22,225	95,8
Wf	92,075 ^{M7}	3-7/8	22,225	101,9

Größe	Materialien	Bauform	Code						
14	Aluminium	B-Nabe		Ed					
19	PM	B-Nabe	Α	Ed	Gs				
	Aluminium	A-Nabe	Α	Es					
24	PM	B-Nabe	Α	G	F	Та	Gd		
	Aluminium	A-Nabe	Α	G	F				
28	PM	B-Nabe	Α	G	F	K			
	Aluminium	A-Nabe	Α	G	F				
38	PM	A-Nabe	Α	G	F	K	Bs	DNI	Sb


Größe	Materialien	Bauform		Code						
38	Aluminium	A-Nabe			F					
42	Gusseisen	A-Nabe	С	G	F	K	Bs	Ма		
		B-Nabe				L				
	Aluminium	A-Nabe			Nb					
48	Gusseisen	A-Nabe	С	G	Nb	K				
55	Gusseisen	A-Nabe	С			K	L			
65	Gusseisen	A-Nabe	С	Pa		K				
75	Gusseisen	A-Nabe	С			K				



Kegelbohrungen — Keilwellenbohrungen

Kegelbohrungen

Bestellvorgang für Konus 1:8 — Vor dem "N" den Pumpentyp und nach dem "N" den Kupplungstyp einfügen. Bestellcodes…N…/6 und…N…/6a haben parallel zum Konus eine Passfedernute.

Konusmaße 1:5

Code	d +0,05	b +0,05	T ₂ +0,1	I _k
A 10	9,85	2	1,0	11,5
B 17	16,85	3	1,8	18,5
C 20	19,85	4	2,2	21,5
Cs 22	21,95	3	1,8	21,5
D 25	24,85	5	2,9	26,5
E 30	29,85	6	2,6	31,5
F 35	34,85	6	2,6	36,5
G 40	39,85	6	2,6	41,5

Konusmaße 1:10

Code	d +0,05	b JS9	T ₂ +0,1	I _k
CX20	19,95	5	12,1	32
DX25	24,95	6	14,1	45
EX30	29,75	8	17,0	50

Konusmaße 1:8

Code	d +0,05	b +0,05	T ₂ +0,1	l _k
N/ 1	9,7	2,4	10,85	17
N/ 1c	11,6	3	12,90	16,5
N/ 1e	13	2,4	13,80	21
N/ 1d	14	3	15,50	17,5
N/ 1b	14,3	3,2	15,65	19,5
N/ 2	17,287	3,2	18,24	24
N/ 2a	17,287	4	18,94	24
N/ 2b	17,287	3	18,34	24
N/ 3	22,002	4	23,40	28
N/ 4	25,463	4,78	27,83	36
N/ 4b	25,463	5	28,23	36
N/ 4a	27	4,78	28,80	32,5
N/ 4g	28,45	6	29,32	38,5
N/ 5	33,176	6,38	35,39	44
N/ 5a	33,176	7	35,39	44
N/ 6	43,057	7,95	3,378	51
N/ 6a	41,15	8	3,1	42,5

Naben mit Kegelbohrungen - Verfügbarkeitstabelle

Konus		Verfügbare Nabengrößen										
1:5	1	9	24		28		38		42			
Code	STL	AL	STL	AL	STL	AL	STL	AL	Gusseisen			
A10	Х	Х										
B17			Х	Х	Х	Х	Х	Х				
C20			Х		Х		Х					
D25					Х		Х		Х			

STI	-	Sta	hl	na	h۵

Konus		Verfügbare Nabengrößen									
1:8	19	9	2	4	28		3	8	42		
Code	STL	AL	STL	AL	STL	AL	STL	AL	Gusseisen		
N/1	Х	Х	Х	Х	Х						
N/1d	Х		Х	Х							
N/2			Х	Х	Х	Χ	Х				
N/2a			Х	Х	Х	Χ	Х				
N/3	ı	l		l	X	Х	l x		l x		

Keilwellenbohrungen

Klemmnabe mit L-Loc (L-Loc) (wird empfohlen)

Klemmnabe mit Keilwellenbohrung (SC) (wird empfohlen)

Nabe mit Keilwellenbohrung und Befestigungsschraube (W/SS) (wird nicht empfohlen)

SAE Evolventen-Keilwellentabelle*(Inch - Angaben)

Größe	Haupt- Durchm.	Teilungs- Durchm.	Teilung	Anzahl d. Zähne	Druck- Winkel
Α	0,625	0,561	16/32	9	30
	0,750	0,687	16/32	11	30
В	0,875	0,812	16/32	13	30
BB	1,000	0,937	16/32	15	30
	1,125	1,06	16/32	17	30
С	1,250	1,16	12/24	14	30
LJ2	1,375	1,31	16/32	21	30
CC	1,500	1,33	12/24	17	30
	1,500	1,43	16/32	23	30
LJ3	1,500	1,44	16/32	23	30
	1,750	1,67	16/32	27	30
D, E	1,750	1,62	8/16	13	30
	2,563	2,50	16/32	40	30

^{*} Klasse-5-Passung ist Standard. Flacher Fuß mit Seitenpassung.

DIN 5480 Keilwellenspezifikationen

Тур	Größe	Teilungs- Durchm.	Modul	Anzahl d. Zähne
20 x 1	x 18 x 7H	18	1	18
20 x 1,2	5 x 14 x 7H	17,5	1,25	14
25 x 1,2	5 x 18 x 7H	22,5	1,25	18
30 x 2	x 13 x 7H	26	2	13
30 x 2	x 14 x 7H	28	2	14
35 x 2	x 16 x 8H	32	2	16
40 x 2	x 18 x 7H	36	2	18
45 x 2	x 21 x 7H	41	2	21
48 x 2	x 22 x 9H	44	2	22
50 x 2	x 24 x 7H	48	2	24

DIN 5480 Keilwellennaben - Verfügbarkeit

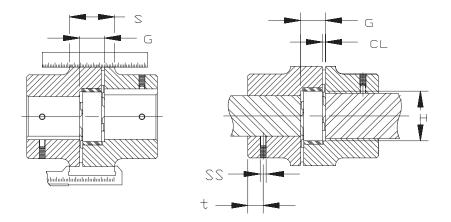
Code 24	42	48	55	65	75	
20 x 1,25 x 14 x 7H	0					
25 x 1,25 x 18 x 7H	0					
30 x 2 x 14 x 7H	Х		0			
35 x 2 x 16 x 8H			х			
40 x 2 x 18 x 7H		l	0	0		
50 x 2 x 24 x 7H				Х	ОХ	ОХ

O = Nabe mit Befestigungsschraube verfügbar X = Nabe in Klemmausführung verfügbar

SAE Keilwellennaben - Verfügbarkeit

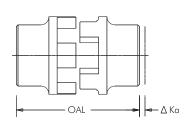
Größe	24	28	38	42	48	55	65	75	90
Α	ОХ	Х							
В	0								
BB		οх	Х	οх	Х	Х		Х	
С		οх	Х	οх	Х	Х			
LJ2				Х	οх				
СС				Х	οх				
LJ3						0			
D, E							Х	Х	Х

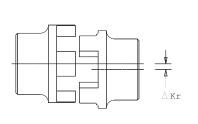
DIN 5482 Keilwellenspezifikationen

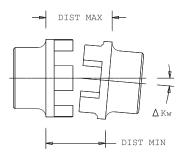

Größe	Teilung Durchm.	Modul	Anzahl d. Zähne	Profil Korrektur
A 17 x 14	14,40	1,6	9	+0,6
A 28 x 25	26,25	1,75	15	+0,302
A 30 x 27	28,00	1,75	16	+0,327
A 35 x 31	31,50	1,75	18	+0,676
A 40 x 36	38,00	1,9	20	+0,049
A 45 x 41	44,00	2	22	+0,181
A 50 x 45	48,00	2	24	+0,181

DIN 5482 Keilwellennaben - Verfügbarkeit

						_
Größe	24	42	48	55	65	75
A35 x 31		0				
A45 x 41			ОХ	ОХ	Х	







Kupplungsmontage und Verlagerungsfähigkeit [mm]

Abmessungen	Kupplu	ıngsgröß	е														
	14	19	24	28	38	42	48	55	65	75	90	100	110	125	140	160	180
G	13	16	18	20	24	26	28	30	35	40	45	50	55	60	65	75	85
CL	1,5	2	2	2,5	3	3	3,5	4	4,5	5	5,5	6	6,5	7	7,5	9	10,5
Н	10	18	27	30	38	46	51	60	68	80	100	113	127	147	165	190	220
S	-	26	30	34	40	46	50	56	63	72	83	92	103	116	127	145	163

VERLAGERUNG [mm] = DIST MAX - DIST MIN

Axialverlagerung

Radialverlagerung

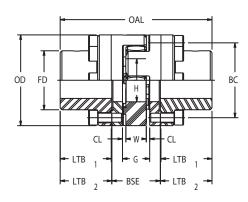
Winkelverlagerung

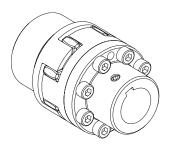
Verlagerungsmaße [mm]

	Kupp	lungsgr	öße														
	14	19	24	28	38	42	48	55	65	75	90	100	110	125	140	160	180
Max. Axialverlag. DKa	1,0	1,2	1,4	1,5	1,8	2,0	2,1	2,2	2,6	3,0	3,4	3,8	4,2	4,6	5,0	5,7	6,4
Max. Radialverlag. DKr	0,17	0,20	0,22	0,25	0,28	0,32	0,36	0,38	0,42	0,48	0,50	0,52	0,55	0,60	0,62	0,64	0,68
DKw Max Winkelverlag.																	
n = 1500 [1/min] in Grad	1,2	1,2	0,9	0,9	1,0	1,0	1,1	1,1	1,2	1,2	1,2	1,2	1,3	1,3	1,2	1,2	1,2
Winkelverlag. [mm]	0,67	0,82	0,85	1,05	1,35	1,70	2,00	2,30	2,70	3,30	4,30	4,80	5,60	6,50	6,60	7,60	9,00
BefestSchrauben-Info																	
Schraubengröße (SS)	M4	M5	M5	M6	M8	M8	M8	M10	M10	M10	M12	M12	M16	M16	M20	M20	M20
Schraubenposition (t)	5	10	10	15	15	20	20	20	20	25	30	30	35	40	45	50	50

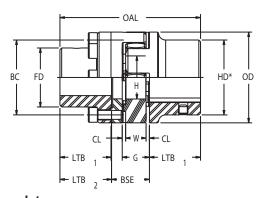
Die angegebenen Verlagerungswerte setzen normale Betriebsbedingungen voraus (z.B. die Temperatur, das Drehmoment innerhalb der Nennwerte der Kupplung, die Umfangsgeschwindigkeit/Drehzahlauslegung der Kupplung und die Verlagerung). Die Kupplung muss sorgfältig montiert (Ausrichtung) und regelmäßig inspiziert werden, um eine optimale Lebensdauer der Kupplung zu erreichen. Die Position der Wellen und das Maß der Axialbewegung, mit der die Kupplung ausgesetzt wird, sollten besonders in Betracht gezogen werden. Je genauer die Kupplung ausgerichtet ist, desto länger ist die Lebensdauer des Elastomers. Die Montage einer Kupplungsabdeckung und drehende Teile betreffende Sicherheitsvorkehrungen sollten immer beachtet werden. In der Lovejoy Website unter www.lovejoy-inc.com finden Sie Montageanweisungen für die Bogenklauenkupplung.

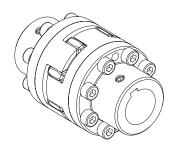
CJDB- und CJSB-Ausführungen





Merkmale und Vorteile


- Beide Kupplungsflansche, sowohl mit Doppel- (CJDB) als auch mit Einzelverschraubung (CJSB), haben leicht zu entnehmende Komponenten.
- Der Flansch ist nur in Stahl erhältlich.

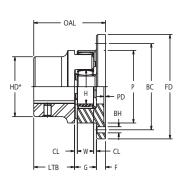

CJDB-Ausführung

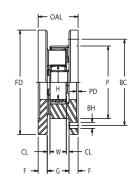
CJSB-Ausführung

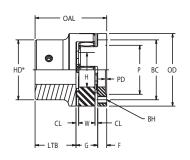
CJDB- und CJSB-Abmessungsdaten

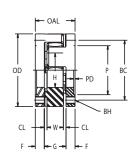
CJSB/ I (CJDB)(CJSB) Z (CJDB) (CJSB) Größe Schrauben Dre 24 55 36 45 27 30 33 26 18 2,0 14 30,5 94 86 M5 x 16 8 8 28 65 42 54 30 35 39 30 20 2,5 15 35,5 110 100 M6 x 20 8 8 x 45° 8 38 80 52 66 38 45 43 34 24 3,0 18 45,5 134 124 M8 x 22 8 42 95 62 80 46 50 48 38 26 3,0 20 51,0 150 138 M8 x 25 12 16 x 22,5° 48 105 70 90 51 56 50 40 28 2,5 21 57,0 164 152 M8 x 25 12 16 x 22,5°	Größe							Abme	ssui	ngen						Zylinderk	opfschrauben	
24 55 36 45 27 30 33 26 18 2,0 14 30,5 94 86 M5 x 16 8 28 65 42 54 30 35 39 30 20 2,5 15 35,5 110 100 M6 x 20 8 8 x 45° 38 80 52 66 38 45 43 34 24 3,0 18 45,5 134 124 M8 x 22 8 42 95 62 80 46 50 48 38 26 3,0 20 51,0 150 138 M8 x 25 12 16 x 22,5° 48 105 70 90 51 56 50 40 28 2,5 21 57,0 164 152 M8 x 25 12 16 x 22,5° 55 120 80 102 60 65 60 46 30 4,0 22 66,0 192 176 M10 x 30 8 8 x 45° 55 <td< th=""><th>CJDB</th><th>OD</th><th>FD</th><th>ВС</th><th>Н</th><th>LTB</th><th>BSE</th><th>BSE</th><th>G</th><th>CL</th><th>W</th><th>LTB</th><th>OAL</th><th>OAL</th><th>Schrauben-</th><th>Anzahl der</th><th>Abstand</th><th>Schrauben-</th></td<>	CJDB	OD	FD	ВС	Н	LTB	BSE	BSE	G	CL	W	LTB	OAL	OAL	Schrauben-	Anzahl der	Abstand	Schrauben-
28 65 42 54 30 35 39 30 20 2,5 15 35,5 110 100 M6 x 20 8 8 x 45° 38 80 52 66 38 45 43 34 24 3,0 18 45,5 134 124 M8 x 22 8 42 95 62 80 46 50 48 38 26 3,0 20 51,0 150 138 M8 x 25 12 16 x 22,5° 48 105 70 90 51 56 50 40 28 2,5 21 57,0 164 152 M8 x 25 12 16 x 22,5° 55 120 80 102 60 65 60 46 30 4,0 22 66,0 192 176 M10 x 30 8 8 x 45° 65 135 94 116 62 75 65 51 35 4,5 26 76,0 217 201 M10 x 30 12 16 x 22,5°	CJSB/					1	(CJDB)	(CJSB)				2	(CJDB)	(CJSB)	Größe	Schrauben		Drehmom.(Nm)
38 80 52 66 38 45 43 34 24 3,0 18 45,5 134 124 M8 x 22 8 42 95 62 80 46 50 48 38 26 3,0 20 51,0 150 138 M8 x 25 12 16 x 22,5° 48 105 70 90 51 56 50 40 28 2,5 21 57,0 164 152 M8 x 25 12 16 x 22,5° 55 120 80 102 60 65 60 46 30 4,0 22 66,0 192 176 M10 x 30 8 8 x 45° 65 135 94 116 62 75 65 51 35 4,5 26 76,0 217 201 M10 x 30 12 16 x 22,5° 75 160 108 136 80 85 75 59 4	24	55	36	45	27	30	33	26	18	2,0	14	30,5	94	86	M5 x 16	8		10
42 95 62 80 46 50 48 38 26 3,0 20 51,0 150 138 M8 x 25 12 16 x 22,5° 48 105 70 90 51 56 50 40 28 2,5 21 57,0 164 152 M8 x 25 12 16 x 22,5° 55 120 80 102 60 65 60 46 30 4,0 22 66,0 192 176 M10 x 30 8 8 x 45° 65 135 94 116 62 75 65 51 35 4,5 26 76,0 217 201 M10 x 30 8 8 x 45° 75 160 108 136 80 85 75 59 40 5,0 30 86,5 248 229 M12 x 40 15 90 200 142 172 100 100 82 65 <t< td=""><td>28</td><td>65</td><td>42</td><td>54</td><td>30</td><td>35</td><td>39</td><td>30</td><td>20</td><td>2,5</td><td>15</td><td>35,5</td><td>110</td><td>100</td><td>M6 x 20</td><td>8</td><td>8 x 45°</td><td>17</td></t<>	28	65	42	54	30	35	39	30	20	2,5	15	35,5	110	100	M6 x 20	8	8 x 45°	17
48 105 70 90 51 56 50 40 28 2,5 21 57,0 164 152 M8 x 25 12 16 x 22,5° 55 120 80 102 60 65 60 46 30 4,0 22 66,0 192 176 M10 x 30 8 8 x 45° 65 135 94 116 62 75 65 51 35 4,5 26 76,0 217 201 M10 x 30 12 16 x 22,5° 75 160 108 136 80 85 75 59 40 5,0 30 86,5 248 229 M12 x 40 15 90 200 142 172 100 100 82 65 45 5,5 34 101,5 285 265 M16 x 40 15 100 225 158 195 113 110 97 75 50	38	80	52	66	38	45	43	34	24	3,0	18	45,5	134	124	M8 x 22	8		41
48 105 70 90 51 56 50 40 28 2,5 21 57,0 164 152 M8 x 25 12 55 120 80 102 60 65 60 46 30 4,0 22 66,0 192 176 M10 x 30 8 8 x 45° 65 135 94 116 62 75 65 51 35 4,5 26 76,0 217 201 M10 x 30 12 16 x 22,5° 75 160 108 136 80 85 75 59 40 5,0 30 86,5 248 229 M12 x 40 15 90 200 142 172 100 100 82 65 45 5,5 34 101,5 285 265 M16 x 40 15 100 225 158 195 113 110 97 75 50 6,0 3	42	95	62	80	46	50	48	38	26	3,0	20	51,0	150	138	M8 x 25	12	16 v 22 F0	41
65 135 94 116 62 75 65 51 35 4,5 26 76,0 217 201 M10 x 30 12 16 x 22,5° 75 160 108 136 80 85 75 59 40 5,0 30 86,5 248 229 M12 x 40 15 90 200 142 172 100 100 82 65 45 5,5 34 101,5 285 265 M16 x 40 15 100 225 158 195 113 110 97 75 50 6,0 38 111,5 320 295 M16 x 50 15 110 255 178 218 127 120 103 81 55 6,5 42 122,0 347 321 M20 x 50 15 128 99 65 7,5 50 157,5 443 409 M20 x 60 15 160 370 270 325 190 175 146 113 75 9,0 57 177,5 501 463 M24 x 70 15	48	105	70	90	51	56	50	40	28	2,5	21	57,0	164	152	M8 x 25	12	10 X 22,3°	41
75 160 108 136 80 85 75 59 40 5,0 30 86,5 248 229 M12 x 40 15 90 200 142 172 100 100 82 65 45 5,5 34 101,5 285 265 M16 x 40 15 100 225 158 195 113 110 97 75 50 6,0 38 111,5 320 295 M16 x 50 15 110 255 178 218 127 120 103 81 55 6,5 42 122,0 347 321 M20 x 50 15 20 x 18° 125 290 206 252 147 140 116 90 60 7,0 46 142,0 400 370 M20 x 60 15 140 320 235 282 165 155 128 99 65 7,5 50	55	120	80	102	60	65	60	46	30	4,0	22	66,0	192	176	M10 x 30	8	8 x 45°	83
90 200 142 172 100 100 82 65 45 5,5 34 101,5 285 265 M16 x 40 15 100 225 158 195 113 110 97 75 50 6,0 38 111,5 320 295 M16 x 50 15 110 255 178 218 127 120 103 81 55 6,5 42 122,0 347 321 M20 x 50 15 20 x 18° 125 290 206 252 147 140 116 90 60 7,0 46 142,0 400 370 M20 x 60 15 140 320 235 282 165 155 128 99 65 7,5 50 157,5 443 409 M20 x 60 15 160 370 270 325 190 175 146 113 75 9,0 57 177,5 501 463 M24 x 70 15	65	135	94	116	62	75	65	51	35	4,5	26	76,0	217	201	M10 x 30	12	16 x 22,5°	83
100 225 158 195 113 110 97 75 50 6,0 38 111,5 320 295 M16 x 50 15 110 255 178 218 127 120 103 81 55 6,5 42 122,0 347 321 M20 x 50 15 20 x 18° 125 290 206 252 147 140 116 90 60 7,0 46 142,0 400 370 M20 x 60 15 140 320 235 282 165 155 128 99 65 7,5 50 157,5 443 409 M20 x 60 15 160 370 270 325 190 175 146 113 75 9,0 57 177,5 501 463 M24 x 70 15	75	160	108	136	80	85	75	59	40	5,0	30	86,5	248	229	M12 x 40	15		120
110 255 178 218 127 120 103 81 55 6,5 42 122,0 347 321 M20 x 50 15 20 x 18° 125 290 206 252 147 140 116 90 60 7,0 46 142,0 400 370 M20 x 60 15 140 320 235 282 165 155 128 99 65 7,5 50 157,5 443 409 M20 x 60 15 160 370 270 325 190 175 146 113 75 9,0 57 177,5 501 463 M24 x 70 15	90	200	142	172	100	100	82	65	45	5,5	34	101,5	285	265	M16 x 40	15		295
125 290 206 252 147 140 116 90 60 7,0 46 142,0 400 370 M20 x 60 15 140 320 235 282 165 155 128 99 65 7,5 50 157,5 443 409 M20 x 60 15 160 370 270 325 190 175 146 113 75 9,0 57 177,5 501 463 M24 x 70 15	100	225	158	195	113	110	97	75	50	6,0	38	111,5	320	295	M16 x 50	15		295
140 320 235 282 165 155 128 99 65 7,5 50 157,5 443 409 M20 x 60 15 160 370 270 325 190 175 146 113 75 9,0 57 177,5 501 463 M24 x 70 15	110	255	178	218	127	120	103	81	55	6,5	42	122,0	347	321	M20 x 50	15	20 x 18°	580
160 370 270 325 190 175 146 113 75 9,0 57 177,5 501 463 M24 x 70 15	125	290	206	252	147	140	116	90	60	7,0	46	142,0	400	370	M20 x 60	15		580
	140	320	235	282	165	155	128	99	65	7,5	50	157,5	443	409	M20 x 60	15		580
180 420 315 375 220 195 159 125 85 10,5 64 198,0 555 515 M24 x 80 18 24 x 15°	160	370	270	325	190	175	146	113	75	9,0	57	177,5	501	463	M24 x 70	15		1000
	180	420	315	375	220	195	159	125	85	10,5	64	198,0	555	515	M24 x 80	18	24 x 15°	1000

^{*} Für Standard-Nabenabmessungen HD bitte Seite 6 beachten.


CJLFH-, CJDLF-, CJSFH- und CJDSF-Ausführungen






Merkmale und Vorteile

- Die Doppelflansch Ausführung ist für platzsparende, kompakte Verbindungen erhältlich.
- Es ist auch eine Nabe / Flanschausführung für spezielle Anwendungen verfügbar.

CJLFH-Ausführung

CJDLF-Ausführung

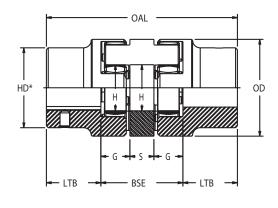
CJSFH-Ausführung

CJDSF-Ausführung

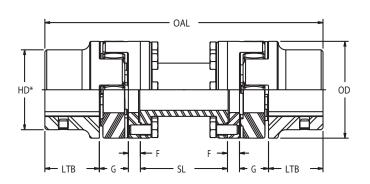
CJLFH-, CJDLF-, CJSFH- und CJDSF-Abmessungsdaten

CJLFH CJDLF		Allo	geme	ine A	bmes	sunge	en			Abn	nessui	ngen: C	JLFH ur	d CJDL	_F		Abn	nessu	ngen C	JSFH und	CJDSF	
CJSFH CJDSF Größe	OD	Н	LTB	G	CL	W	PD	F	FD	Р	ВС	Anz. d. Schraub.	BH n. DIN 69	OAL (CJLFH	OAL (CJDLF)	Р	вс	ВН	Anz. d. Schraub.	Abstand Z x a	OAL (CJSFH)	OAL (CJDSF)
24	55	27	30	18	2	14	1,5	8	80	55	65	5	5,5	56	34	36	45	M5	8		56	34
28	65	30	35	20	2,5	15	1,5	10	100	65	80	6	6,6	65	40	44	54	M6	8	8 x 45°	65	40
38	80	38	45	24	3	18	1,5	10	115	80	95	6	9	79	44	54	66	M8	8		79	44
42	95	46	50	26	3	20	2	12	140	95	115	6	9	88	50	65	80	M8	12	16 x 22.5°	88	50
48	105	541	56	28	3,5	21	2	12	150	105	125	8	9	96	52	75	980	M8	12	10 X 22,0	96	52
55	120	60	65	30	4	22	2	16	175	120	145	8	11	111	62	84	102	M10	8	8 x 45°	111	62
65	135	68	75	35	4,5	269	2	16	190	135	160	10	11	126	67	96	116	M10	12	16 x 22,5°	126	67
75	160	80	85	40	5	30	2,5	19	215	160	185	10	13,5	144	78	112	136	M12	15		144	78
90	200	100	100	45	5,5	34	3	20	260	200	225	12	17,5	165	85	145	172	M16	15		165	85
100	225	113	110	50	6	38	4	25	285	225	250	12	17,5	185	100	165	195	M16	15		185	100
110	255	127	120	55	6,5	42	4	26	330	255	290	12	22	201	107	180	218	M20	15	20 x 18°	201	1087
125	290	147	140	60	7	46	5	30	370	290	325	16	22	230	120	215	252	M20	15		230	120
140	320	165	155	65	7,5	50	5	34	410	320	360	16	22	254	133	245	282	M20	15		254	133
160	370	190	175	75	9	57	5	38	460	370	410	16	26	288	151	280	325	M24	15		288	151
180	420	220	195	85	10,5	64	5,5	40	520	420	465	16	26	320	165	330	375	M24	18	24 x 15°	320	165

 $^{^{\}star}$ Für Standard-Nabenabmessungen HD bitte Seite 6 beachten.



CJSPC- und CJDSPC-Ausführungen

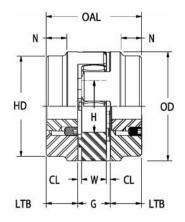


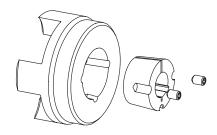
Merkmale und Vorteile

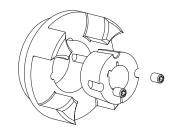
- •Nabenwerkstoffe in Aluminium, Sintermetall, Gusseisen und Stahl erhältlich
- •Mittelteilwerkstoff Aluminium -
- •Eine doppelkardanische Bauform mit 2 Kupplungssternen für erhöhte Dämpfung und Parallelverlagerung
- •Diese Bauform ermöglicht einen einfachen Austausch der Elastomere
- •Für größere Wellenabstände ausgelegt

CJDSPC-Ausführung

CJSPC- und CJDSPC-Abmessungsdaten


								Max. R Verlageru max. W Verlagerur	ing oder /inkel- ig i [º] bei						1° W un Al	ialverla /inkelv d n = 1 bstand	lax. agerun verlage 500 1/ Istück stands	rung min für	Max. Axial- Verlagerung		Sechsk schrau DIN 9	ben 33
Größe	OD	Н	LTB	G	s	BSE	OAL	n = 1500) 1/min	T _{kn}	T _{kmax}	F	SL	OAL			SE		ĕ ĕ	Schraub.	Anz. d.	T _A [Nm]
							(CJSPC)							(CJDSPC)	100	140	180	250		Größe	Schraub.	
19	40	18	25	16	10	42	92	0.65														
24	55	27	30	18	16	52	112	0,89		35	70	8	52	BSE+60	1,4				1,4	M5	16	6
28	65	30	35	20	18	58	128	1		95	190	10	60	BSE+70	1,4				1,5	M6	16	14
38	80	38	45	24	20	68	158	1,15	Nabe	190	380	10	68	BSE+90	1,3	2			1,8	M8	16	35
42	95	46	50	26	22	74	174	1,26	Ž	265	530	12	76	BSE+100		2			2	M8	16	35
48	105	61	56	28	24	80	192	1,36	pro	310	620	12	80	BSE+112		2			2,1	M8	16	35
55	120	60	65	30	28	88	218	1,52	1° 30′	410	820	16	92	BSE+130		1,9	2,6	3,8	2,2	M10	8	69
65	135	68	75	35	32	102	252	1,75	7	625	1250	16	102	BSE+150				3,8	2,6	M10	12	69
75	160	80	85	40	36	116	286	2		1280	2560	19	118	BSE+170			2,4	3,7	3	M12	15	120
90	200	100	100	45	40	130	330	2,5		2400	4800	20	130	BSE+200				3,5	3,4	M16	15	295


^{*} Für Standard-Nabenabmessungen HD bitte Seite 6 beachten.



Bogenklauenkupplung mit Taper-Spannbuchse

Außenmontage

Innenmontage

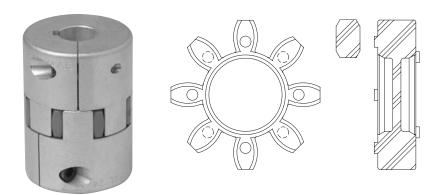
Kupplungen mit Taper-Spannbuchse - Abmessungen

				Abı	mes	sunge	n (m	m)			Befest	tigungsso	hraube fü	r Taper-Buchse
Größe	Taper-						<u> </u>							Anzugs-
	Spann-		_				١	l			Größe	Länge	Anz. d.	Drehmoment
	Buchse	LTB	G	CL	W	OAL	N	OD	HD	Н	[Zoll]	[Zoll]	Schrauben	[Nm]
28	1108	23	20	2,5	15	66	-	65	65	30	0,25	1/2	2	5,7
38	1108	23	24	3	18	70	15	80	78	38	0,25	1/2	2	5,7
42	1610	26	26	3	20	78	16	95	94	46	0,38	5/8	2	20
48	1615	39	28	3,5	21	106	28	15	104	51	0,38	5/8	2	20
55	2012	33	30	4	22	96	20	120	118	60	0,44	7/8	2	31
75	2517	52	40	5	30	144	36	160	135	80	0,50	1		49
	3020	J2	+0	3	30	144	30	100	133	00	0,63	1-1/4	2	92

Taperlock - Spannbuchsen - Referenztabelle - Bohrungsdurchmesser (Taperlock - Spannbuchsen auf Anfrage)

Größe der Taper- Buchsen																			
1108	10	11	12	14	16	18	19	20	22	24	25	28							
1610	14	16	18	19	20	22	24	25	28	30	32	35	38	40	42*				
1615	14	16	18	19	20	22	24	25	28	30	32	35	38	40	42*				
2012	14	16	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	
2517	16	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	55	60
3020	25	28	30	35	38	40	42	45	48	50	55	60	65	70	75				

CJDO-DCFS- und CJDCFT-GS-Ausführungen


Merkmale und Vorteile

- Ausführung mit Zwischenwelle für große Spannweiten.
- · Optimale Parallelverlagerung
- · Einfacher Elastomer Austausch

Technische Beschreibung der GS Series

Die Elastischen Klauenkupplungen der GS Series bieten Spielfreiheit. Die Kupplungen der GS Serie kann in einer Vielzahl unterschiedlicher Anwendungen, die Präzision und Genauigkeit erfordern, eingesetzt werden.

Die Klauen der Kupplungszahnkränze der GS Serie sind in der Mitte gerade und bieten durch die entsprechende Vorspannung eine höhere Steifigkeit. Die balligen Enden der Klauen ermöglichen Verlagerungen, während die kurvenförmigen Klauen und die massive Mitte des Sterns höhere Drehzahlen zulassen.

Die Mitnehmer der Naben und die Klauen der Kupplungssterne sind abgeschrägt, um eine leichte Montage zu ermöglichen. Die Kupplungsausführung der GS Serie erlaubt auch eine Blindmontage an engen Stellen. Nocken auf den Kupplungssternen gewährleisten den richtige Abstand zwischen Nabe und Stern.

Die richtige Montage der Kupplung kann eine elektrische Isolierung liefern. Überprüfen Sie das auf der Seite 18 aufgeführte CL-Maß, um den richtigen Abstand zwischen Stern und Nabe zu gewährleisten.

Für die Kupplungen der GS Series sind Sterne in vier unterschiedlichen Shore-Härtegraden verfügbar. Jeder dieser Kupplungssterne bietet Vorteile für unterschiedliche Vibrations-, Umgebungs- und Drehmomentanforderungen.

Elastomer-Leistungsdaten der GS Series

					Größen	
KupplStern-Typ	Farbe	Material	Normal	Maximum	verfügbar	Typische Anwendungen
80 Shore A GS	Blau	Urethan	-50 bis 80 °C	-80 bis 120	14 - 24	Elektrische Messsysteme.
92 Shore A GS	Gelb	Urethan	-40 bis 90 °C	-50 bis 120	14 - 55	Elektrische Mess- und Steuerungssysteme.
95/98 Shore A	Rot	Urethan	-30 bis 90 °C	-40 bis 120	14 - 55	Positionierungsantriebe, Hauptspindelantriebe, hohe Belastungsanwendungen.
64 Shore D GS	Grün	Urethan	-20 bis 110 °C	-30 bis 120	14 - 55	Hohe Belastungsanwendungen, die torsionssteifes Sternmaterial erfordern.

Kupplungsauswahl in der GS Series

Typische Anwendungen

Mess- und Steuerungssysteme

Die Torsionssteife der GS Serie liefert die erforderliche Genauigkeit für Mess- und Steuerungssysteme. Die niedrigen Drehmomente dieser Anwendungen geben der GS Serie durch die Vorspannung des Elastomers die Fähigkeit der Spielfreiheit.

Servo- und Positionierungsantriebe

Die GS - Serie bietet eine spielfreie flexible Verbindung für Servo- und Positionierungsantriebe. Ein zusatzlicher Vorteil der GS - Serie ist die Dämpfungsfähigkeit. Für Anwendungen mit Vibrationen bei kritischen Drehzahlen, können die Kupplungen der GS Serie eine spielfreie Lösung bei derartigen Problemen bieten.

Hauptspindelantriebe

Kupplungen der GS Serie werden bei Hauptspindelantrieben für Werkzeugmaschinen verwendet. Die Drehmomentspitzen und zyklischen Belastungen werden von der GS Serie durch Dämpfung und die Verschiebung des Vibrationsfrequenzbereiches in einem unkritischen Drehzahlbereich verlagert.

GS Series - Betriebsfaktoren

Temperaturfaktor

	-30 bis +30 °C	+40 °C	+60 °C	+80 °C
K3	1	1,2	1,4	1,8

Torsionssteifheitsfaktor

	Haupt- spindel- antrieb d. Maschine		Kodierer, Kodierer
17.4	0.5	2.0	40
K4	2-5	3-8	10

Stoßbelastungsfaktoren

	K5
Leichte Stoßbelastung	1,0
Mittlere Stoßbelastung	1,4
Schwere Stoßbelastung	1,8

Berechnungsformel

Nenndrehmoment Tn [Nm] = $\frac{9550 \times P \text{ [kW]}}{\text{IJ/min [1/min]}}$

Rotationsträgheitskoeffizient (Antrieb) = Trägheitsmoment (Antrieb) + Trägheitsmoment (Abtrieb)

Trägheitsmoment (Antrieb) + Trägheitsmoment (Abtrieb)

Rotationsträgheitskoeffizient (Abtrieb) = <u>Trägheitsmoment (Abtrieb)</u>
Trägheitsmoment (Antrieb) + Trägheitsmoment (Abtrieb)

Das Nenndrehmoment der Anwendung gegen die Auslegung der Kupplung prüfen:

Tkn > Nenndrehmoment der Maschine x K3 x K4

Spitzendrehmoment

Stoßbelastung (Antriebsseite) = Spitzendrehmoment (Antrieb) x Rotationsträgheitskoeffizient (Antrieb) x K5

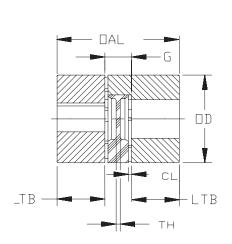
Stoßbelastung (Abtriebsseite) = Spitzendrehmoment (Abtrieb) x Rotationsträgheitskoeffizient (Abtrieb) x K5

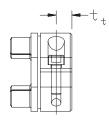
Das Spitzendrehmoment der Anwendung von beiden Seiten (Antrieb und Abtrieb) mit den Auslegungswerten der Kupplung (siehe Seite 17) überprüfen:

Tkmax > Spitzendrehmoment (Antriebs- oder Abtriebsseite) x K3 x K4

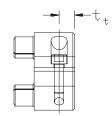
GS Serie - Technische Beschreibung

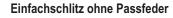
GS-Shore - Drehmomentauslegung

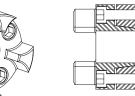

GS	Stern (Durometer)		aximale Dre	ehzahl für nen (U/min)		noment	Statische Torsions-	Dynamische Torsions-	Radiale		cht (kg)	Polares T moment	
Größe		Klemm-	BefSchr.	Klemmeinricht.			Steifheit	Steifheit	Steifheit	Nabe	Stern	Nabe	Stern
		Nabe	Nabe	Nabe	T _{kn}	T _{kmax}	[Nm/rad]	[Nm/rad]	N/mm	(x10 ⁻³)	(x10 ⁻³)	(x10 ⁻⁶)	(x10 ⁻⁶)
	80 Sh. A	12700	15900	25400	4,0	8,0	60,2	180	153	20	4,6	2,8	0,457
14	92. Sh. A				7,5	15,0	114,6	344	336				
''	98. Sh. A				12,5	25,0	171,9	513	654				
	64 Sh. D				16,0	32,0	234,2	702	856				
	80 Sh. A	9550	11900	19000	4,9	9,8	343,8	1030	582	66	7	20,4	1,49
19	92 Sh. A				10,0	20,0	573,0	1720	1120				
	98 Sh. A				17,0	34,0	859,5	2580	2010				
	64 Sh. D				21,0	42,0	1240,3	3720	2930				
	92 Sh. A	6950	8850	13800	35	70	1432	4296	1480	132	18	50,8	7,5
24	98 Sh. A				60	120	2063	6189	2560				
	64 Sh. D				75	150	2978	8934	3696				
	92 Sh. A	5850	7350	11700	95	190	2292	6876	1780	253	29	200,3	16,5
28	98 Sh. A				160	320	3438	10314	3200				
	64 Sh. D				200	400	4350	13050	4348				
	92 Sh. A	4750	5950	9550	190	380	4584	13752	2350	455	49	400,6	44,6
38	98 Sh. A				325	650	7160	21486	4400				
	64 Sh. D				405	810	10540	31620	6474				
	92 Sh. A	4000	5000	8050	265	530	6300	14490	2430	1850	79	2246	100
42	98 Sh. A				450	900	19200	48000	5570				
	64 Sh. D				560	1120	27580	68950	7270				
	92 Sh. A	3600	4550	7200	310	620	7850	18055	2580	2520	98	3786	200
48	98 Sh. A				525	1050	22370	55925	5930				
	64 Sh. D				655	1310	36200	90500	8274				
	92 Sh. A	3150	3950	6350	410	820	9500	21850	2980	3800	115	7496	300
55	98 Sh. A				685	1370	23800	59500	6686				
	64 Sh. D				825	1650	41460	103650	9248				

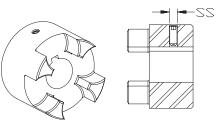


Lovejoy GS Series - Elastische Klauenkupplungen


- Spielfreie Verbindungen z.B. bei Werkzeugmaschinen.
- · Metrische Fertigbohrungen mit H7-Passung.
- Bauformen mit Klemmfunktion und Befestigungsschraube verfügbar.
- Klemmausführung auch für die Anwendung mit einer Wellenklemmvorrichtung verfügbar.






Nabe mit Doppelschlitz

Ausführung mit Spannsatz

Passfedernut und Feststellschraube

Abmessungsdaten [mm]

										Mit Befes	tSchraube	Mit	Klemmschra	ube
		Min-									Befest		Schrauben-	
		Max									Schraube	Schrauben-	Position	Drehm.
Größe	Material	Bohr.	OD	OAL	LTB	G	CL	WT	TH	Größe	SL	Größe	t _t	(NM)
14	Aluminium	S-14	30	35	11	13	1,0	2	2	M4	5	M3	5	1,34
19/24	Aluminium	S-24	40	66	25	16	2,0	3	3	M5	10	M6	12	10,5
24/28	Aluminium	S-28	55	78	30	18	2,0	3	3	M5	10	M6	14	10,5
28/38	Aluminium	S-38	65	90	35	20	2,5	4	4	M6	15	M8	15	25
38/45	Aluminium	S-45	80	114	45	24	3,0	4	4	M8	15	M8	20	25
42	Stahl	S-55	95	126	50	26	3,0	4	4	M8	20	M8	20	25
48	Stahl	S-62	105	140	56	28	3,5	4	4	M8	20	M10	22	69
55	Stahl	S-74	120	160	65	30	4,0	4,5	4,5	M10	20	M12	25	120
65	Stahl	S-80	135	185	75	35	4,5	4,5	4,5	M10	20	M16	32	295

Lovejoy GS Series - Nenndrehmomente [Nm]

	Bohi	rungsd	urchm	esser	und e	ntspr	echen	de Ner	ndreh	mome	nte fü	r Klem	ımnab	en mit	Friktio	nsarre	etierur	ıg.					
Größe	6	10	14	15	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	55	60	65	70
14	5,7	10	22																				
19/24		38	64	58	65	86	95																
24/28				60	69	93	102	93	111	120	148												
28/38							176	207	238	254	283	316	310	361	402								
38/45								296	339	361	404	448	443	513	554	602							
42											431	508	457	563	603	690	598	725	856	874			
48														1036	1155	1067	1241	1420	1460	1579			
55														986	1112	100	1185	1284	1412	1198	1686		
65																		1906	2081	2006	2485	2485	2971

GS Series

GS Series - Standardbohrungsdurchmesser

Größe	Bauform	2	3	4	5	6	6,4	7	8	9	9,5	10	11	12	14	15	16	18	19	20	22	24	25	28	30	32	35	38	40
14	KW					Х			Х	Х		Х	Х	Х	Х	Х													
	SS					Х			Х			Х	Χ	Χ															
	С				Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х													
	CWK								Х			Х	Х	Х	Х												\Box		
	LD											Х			Х												\Box		\Box
19	KW											Х	Х	Х	Х	Х	Х	Х	Χ		Х								
	С									Х		Х	Х	Х	Х	Х	Х	Х	Х										
	CWK													Х	Х	Х	Х	Х	Х										
	LD										Х			Х	Х	Х		Х	Х								\Box		
24	KW											П			Х		Х	Х	Х	Х	Х	Х	Х	Х			\Box		
	DSC															Х	Х	Х	Х	Х	Х	Х	Х						
	DSCK																Х	Х	Х	Х	Х	Х	Х						
	LD															Х	Х	Х	Χ	Х	Х	Х	Х	Χ					
28	KW																			Х		Х	Х	Х	Х	Х	Ш		
	DSC																			Х		Х	Х	Х	Х	Х	Х		
	DSCK																			Х		Х	Х	Х	Х	Х	Х		
	LD																	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	
38	KW																					Х	Х	Х	Х	Χ	Х	Х	Х
	DSC																									Х	Х	Х	Х
	LD																		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х

Bauform-Codes

KW = Nabe mit Passfedernut und Befestigungsschraube

DSC = Zweifachklemmschlitzung

CWK = Klemmabe mit Passfedernut

C = Klemmabe mit Befestigungss

- Zweitachklemmschildzung
ohne Paßfedernut
- Zweitachklemmschlitzung mit
- C = Klemmnabe mit Befestigungsschraube
- Nur Bohrung mit Befestigungsschraube

DSCK = Zweifachklemmschlitzung mit

Paßfedernut

LD = Naben mit Friktionsarretierung

GS Series - Verfügbarkeit größerer Bohrungsdurchmesser [mm]

			١	/erfüg	bare l	Bohru	ngsd	urchm	nesser		
Größe	Bauform	30	32	35	38	40	42	45	48	50	55
42	LD		Χ	Χ	Х	Χ	Х				
48	LD				Χ	Χ	Χ	Χ	Χ		
55	LD					Х	Χ	Χ	Х	Х	Χ

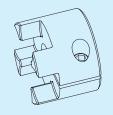
X = Standardbohrungen auf Lager

GS Series - Nabenausführungen

Für die meisten Anwendungsbereiche ist die GS Series mit verschiedenen Nabenausführungen erhältlich. Jede Ausführung bietet spezifische Vorteile für unterschiedliche Anwendungsbereiche.

Passfedernut mit Befestigungsschraube (KW)

Die Standardmethode von Lovejoy zur Sicherung der Nabe auf der Welle. Wir empfehlen die Klemm-Bauform für spielfreie Drehmomentübertragungen.


Ohne Passfedernut, mit Befestigungsschrauben (W/SS)

Befestigungsschrauben zur Sicherung der Nabe auf der Welle. Diese Nabenausführung sollte bei Anwendungen ohne Drehrichtungsänderung und bei niedrigen Drehmomente eingesetzt werden.

Nabe mit Klemmfunktion und Einfachschlitz ohne Passfedernut (C)

Spielfreie Klemmbauform für Drehmomentübertragungen. Die Drehmoment-Übertragungsleistung der Nabe hängt vom Bohrungsdurchmesser ab. Verfügbare Standards für die Größen 14-19.

Klemmnabe mit Einfachschlitz und Passfedernut (CWK)

Spielfreie Klemmbauform mit Passfedernut für Drehmomentübertragungen. Einsetzbar bei Anwendungen mit Reversierbetrieb. Verfügbare Standards für die Größen 14-19.

Klemmnabe mit Doppelschlitz ohne Passfedernut (DSC)

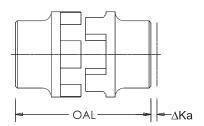
Überträgt Drehmomente mit einer Doppelschlitzklemme zur Arretierung der Nabe auf der Welle. Null oder minimales Spiel. Der Bohrungsdurchmesser bestimmt die Drehmomentleistung der Kupplung. Verfügbarer Standard für die Größen 19-55.

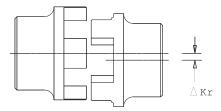
Klemmnabe mit Doppelschlitz und Paßfedernut (DSCK)

Überträgt Drehmomente mit einer Doppelschlitzklemmung zur Arretierung der Nabe auf der Welle. Null oder minimales Spiel. Verfügbare Standards für die Größen 24-55.

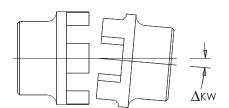
Nabe mit Friktionsarretierung (LD)

Diese Nabe verwendet eine Wellenklemmvorrichtung für die Arretierung auf der Welle. Bei dieser Bauart wird die Nabe mit Schrauben auf der Klauenseite arretiert. Verfügbarer Standard für die Größen 14-55.




GS - Serie Informationen zu Verlagerungswerten

Die GS - Serie kann bei folgenden Verlagerungswerten eingesetzt werden: Axial, Winkel und Radial. Die Kupplung erhält ihre Spielfreiheitseigenschaften durch die Konstruktion ihres Kupplungssterns.



Axialverlagerungen können durch Wellentoleranzen oder durch die Temperaturausdehnung der Wellen verursacht werden. Die GS Series verarbeitet Axialverlagerungen und hält dabei Reaktionskräfte niedrig.

Radialverlagerung

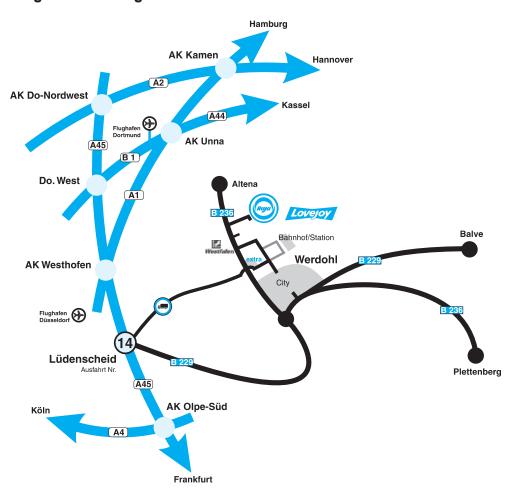
Die Radialverlagerung kann als Maß für den Verlagerungsabstand zwischen den Mittellinien der Antriebs- und Abtriebswelle definiert werden. Dieser Verlagerungstyp verursacht wegen der involvierten Kräfte die höchste Beanspruchung.

Winkelverlagerung

Winkelverlagerungen können als Winkelmaß zwischen den Mittellinien der Antriebs- und Abtriebswelle an der Stelle, wo sich diese Mittellinien etwa auf halbem Abstand zwischen den Wellenenden treffen würden, definiert werden. Die GS Series kann eine spezifische Winkelverlagerung, bezogen auf eine bestimmte Größe verarbeiten (siehe die Tabelle rechts).

GS Series - Verlagerungstabelle

Größe	Stern	Axial	Radial	Winkel
	Shore	DKa	DKr	DKW
		[mm]	[mm]	[Grad]
	80		0,21	1,1
14	92	+1,0	0,15	1,0
14	98	-0,5	0,09	0,9
	64		0,06	0,8
	80		0,15	1,1
19	92	+1,2	0,10	1,0
	98	-0,5	0,06	0,9
	64		0,04	0,8
	92	+1,4	0,14	1,0
24	98	-0,5	0,10	0,9
	64	-0,5	0,07	0,8
	92	+1,5	0,15	1,0
28	98	-0.7	0,11	0,9
	64	-0,7	0,08	0,8
	92	+1,8	0,17	1,0
38	98	-0,7	0,12	0,9
	64	-0,7	0,09	0,8
	92	+2,0	0,19	1,0
42	98	-1,0	0,14	0,9
	64	-1,0	0,10	0,8
	92	12.1	0,23	1,0
48	98	+2,1 1,0	0,16	0,9
	64	1,0	0,11	0,8
	92	+2,2	0,24	1,0
55	98		0,17	0,9
	64	-1,0	0,12	0,8


Hinweis: Technische Daten können ohne Mitteilung und daher ohne Haftung geändert werden.

Lovejoy® und Raja-Lovejoy® sind registrierte Handelsmarken von Lovejoy, Inc. Alle anderen Handelsmarken, Markenbezeichnungen und Namen sind Eigentum des betreffenden Inhabers.

Bitte beachten Sie:

Es gelten ausschließlich unsere allgemeinen Geschäftsbedingungen, die Sie unter www.rajalovejoy.com einsehen können oder kontaktieren Sie uns in unserer Verkaufs-Abteilung in Werdohl.

Wegbeschreibung

Werdohl liegt an der A 45 zwischen Dortmund und Siegen. Wählen Sie die Ausfahrt Nr.14 und biegen Sie links (PKW) oder rechts (LKW) in Richtung Werdohl ab.

Notizen

Notizen

Lovejoy's Qualitätsprodukte

L Series Elastische Klauenkupplungen

Jaw In-Shear Kupplungen

CJ Series Elastische Klauenkupplungen

GS Series Elastische Klauenkupplungen

Lamellenkupplungen

Schlangenfederkupplungen

S-Flex Kupplungen

Torsionskupplungen

Wendelkupplungen

Zahnkupplungen